3.459 \(\int \frac{\sqrt{a+b \sqrt{x}+c x}}{x} \, dx\)

Optimal. Leaf size=106 \[ 2 \sqrt{a+b \sqrt{x}+c x}-2 \sqrt{a} \tanh ^{-1}\left (\frac{2 a+b \sqrt{x}}{2 \sqrt{a} \sqrt{a+b \sqrt{x}+c x}}\right )+\frac{b \tanh ^{-1}\left (\frac{b+2 c \sqrt{x}}{2 \sqrt{c} \sqrt{a+b \sqrt{x}+c x}}\right )}{\sqrt{c}} \]

[Out]

2*Sqrt[a + b*Sqrt[x] + c*x] - 2*Sqrt[a]*ArcTanh[(2*a + b*Sqrt[x])/(2*Sqrt[a]*Sqrt[a + b*Sqrt[x] + c*x])] + (b*
ArcTanh[(b + 2*c*Sqrt[x])/(2*Sqrt[c]*Sqrt[a + b*Sqrt[x] + c*x])])/Sqrt[c]

________________________________________________________________________________________

Rubi [A]  time = 0.0915753, antiderivative size = 106, normalized size of antiderivative = 1., number of steps used = 7, number of rules used = 6, integrand size = 20, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.3, Rules used = {1357, 734, 843, 621, 206, 724} \[ 2 \sqrt{a+b \sqrt{x}+c x}-2 \sqrt{a} \tanh ^{-1}\left (\frac{2 a+b \sqrt{x}}{2 \sqrt{a} \sqrt{a+b \sqrt{x}+c x}}\right )+\frac{b \tanh ^{-1}\left (\frac{b+2 c \sqrt{x}}{2 \sqrt{c} \sqrt{a+b \sqrt{x}+c x}}\right )}{\sqrt{c}} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[a + b*Sqrt[x] + c*x]/x,x]

[Out]

2*Sqrt[a + b*Sqrt[x] + c*x] - 2*Sqrt[a]*ArcTanh[(2*a + b*Sqrt[x])/(2*Sqrt[a]*Sqrt[a + b*Sqrt[x] + c*x])] + (b*
ArcTanh[(b + 2*c*Sqrt[x])/(2*Sqrt[c]*Sqrt[a + b*Sqrt[x] + c*x])])/Sqrt[c]

Rule 1357

Int[(x_)^(m_.)*((a_) + (c_.)*(x_)^(n2_.) + (b_.)*(x_)^(n_))^(p_.), x_Symbol] :> Dist[1/n, Subst[Int[x^(Simplif
y[(m + 1)/n] - 1)*(a + b*x + c*x^2)^p, x], x, x^n], x] /; FreeQ[{a, b, c, m, n, p}, x] && EqQ[n2, 2*n] && NeQ[
b^2 - 4*a*c, 0] && IntegerQ[Simplify[(m + 1)/n]]

Rule 734

Int[((d_.) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[((d + e*x)^(m + 1)*(
a + b*x + c*x^2)^p)/(e*(m + 2*p + 1)), x] - Dist[p/(e*(m + 2*p + 1)), Int[(d + e*x)^m*Simp[b*d - 2*a*e + (2*c*
d - b*e)*x, x]*(a + b*x + c*x^2)^(p - 1), x], x] /; FreeQ[{a, b, c, d, e, m}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ
[c*d^2 - b*d*e + a*e^2, 0] && NeQ[2*c*d - b*e, 0] && GtQ[p, 0] && NeQ[m + 2*p + 1, 0] && ( !RationalQ[m] || Lt
Q[m, 1]) &&  !ILtQ[m + 2*p, 0] && IntQuadraticQ[a, b, c, d, e, m, p, x]

Rule 843

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Dis
t[g/e, Int[(d + e*x)^(m + 1)*(a + b*x + c*x^2)^p, x], x] + Dist[(e*f - d*g)/e, Int[(d + e*x)^m*(a + b*x + c*x^
2)^p, x], x] /; FreeQ[{a, b, c, d, e, f, g, m, p}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0]
&&  !IGtQ[m, 0]

Rule 621

Int[1/Sqrt[(a_) + (b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Dist[2, Subst[Int[1/(4*c - x^2), x], x, (b + 2*c*x)
/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 724

Int[1/(((d_.) + (e_.)*(x_))*Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]), x_Symbol] :> Dist[-2, Subst[Int[1/(4*c*d
^2 - 4*b*d*e + 4*a*e^2 - x^2), x], x, (2*a*e - b*d - (2*c*d - b*e)*x)/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a,
b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[2*c*d - b*e, 0]

Rubi steps

\begin{align*} \int \frac{\sqrt{a+b \sqrt{x}+c x}}{x} \, dx &=2 \operatorname{Subst}\left (\int \frac{\sqrt{a+b x+c x^2}}{x} \, dx,x,\sqrt{x}\right )\\ &=2 \sqrt{a+b \sqrt{x}+c x}-\operatorname{Subst}\left (\int \frac{-2 a-b x}{x \sqrt{a+b x+c x^2}} \, dx,x,\sqrt{x}\right )\\ &=2 \sqrt{a+b \sqrt{x}+c x}+(2 a) \operatorname{Subst}\left (\int \frac{1}{x \sqrt{a+b x+c x^2}} \, dx,x,\sqrt{x}\right )+b \operatorname{Subst}\left (\int \frac{1}{\sqrt{a+b x+c x^2}} \, dx,x,\sqrt{x}\right )\\ &=2 \sqrt{a+b \sqrt{x}+c x}-(4 a) \operatorname{Subst}\left (\int \frac{1}{4 a-x^2} \, dx,x,\frac{2 a+b \sqrt{x}}{\sqrt{a+b \sqrt{x}+c x}}\right )+(2 b) \operatorname{Subst}\left (\int \frac{1}{4 c-x^2} \, dx,x,\frac{b+2 c \sqrt{x}}{\sqrt{a+b \sqrt{x}+c x}}\right )\\ &=2 \sqrt{a+b \sqrt{x}+c x}-2 \sqrt{a} \tanh ^{-1}\left (\frac{2 a+b \sqrt{x}}{2 \sqrt{a} \sqrt{a+b \sqrt{x}+c x}}\right )+\frac{b \tanh ^{-1}\left (\frac{b+2 c \sqrt{x}}{2 \sqrt{c} \sqrt{a+b \sqrt{x}+c x}}\right )}{\sqrt{c}}\\ \end{align*}

Mathematica [A]  time = 0.0577812, size = 106, normalized size = 1. \[ 2 \sqrt{a+b \sqrt{x}+c x}-2 \sqrt{a} \tanh ^{-1}\left (\frac{2 a+b \sqrt{x}}{2 \sqrt{a} \sqrt{a+b \sqrt{x}+c x}}\right )+\frac{b \tanh ^{-1}\left (\frac{b+2 c \sqrt{x}}{2 \sqrt{c} \sqrt{a+b \sqrt{x}+c x}}\right )}{\sqrt{c}} \]

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[a + b*Sqrt[x] + c*x]/x,x]

[Out]

2*Sqrt[a + b*Sqrt[x] + c*x] - 2*Sqrt[a]*ArcTanh[(2*a + b*Sqrt[x])/(2*Sqrt[a]*Sqrt[a + b*Sqrt[x] + c*x])] + (b*
ArcTanh[(b + 2*c*Sqrt[x])/(2*Sqrt[c]*Sqrt[a + b*Sqrt[x] + c*x])])/Sqrt[c]

________________________________________________________________________________________

Maple [A]  time = 0.007, size = 84, normalized size = 0.8 \begin{align*} 2\,\sqrt{a+cx+b\sqrt{x}}+{b\ln \left ({ \left ({\frac{b}{2}}+c\sqrt{x} \right ){\frac{1}{\sqrt{c}}}}+\sqrt{a+cx+b\sqrt{x}} \right ){\frac{1}{\sqrt{c}}}}-2\,\sqrt{a}\ln \left ({\frac{2\,a+b\sqrt{x}+2\,\sqrt{a}\sqrt{a+cx+b\sqrt{x}}}{\sqrt{x}}} \right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+c*x+b*x^(1/2))^(1/2)/x,x)

[Out]

2*(a+c*x+b*x^(1/2))^(1/2)+b*ln((1/2*b+c*x^(1/2))/c^(1/2)+(a+c*x+b*x^(1/2))^(1/2))/c^(1/2)-2*a^(1/2)*ln((2*a+b*
x^(1/2)+2*a^(1/2)*(a+c*x+b*x^(1/2))^(1/2))/x^(1/2))

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{c x + b \sqrt{x} + a}}{x}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+c*x+b*x^(1/2))^(1/2)/x,x, algorithm="maxima")

[Out]

integrate(sqrt(c*x + b*sqrt(x) + a)/x, x)

________________________________________________________________________________________

Fricas [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+c*x+b*x^(1/2))^(1/2)/x,x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{a + b \sqrt{x} + c x}}{x}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+c*x+b*x**(1/2))**(1/2)/x,x)

[Out]

Integral(sqrt(a + b*sqrt(x) + c*x)/x, x)

________________________________________________________________________________________

Giac [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: TypeError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+c*x+b*x^(1/2))^(1/2)/x,x, algorithm="giac")

[Out]

Exception raised: TypeError